ARTÍCULO
TITULO

A Construction Method of a Sequential Decision Chain for Unmanned-Ship Autonomous Collision Avoidance Based on Human-Like Thinking

Xiaoyuan Wang    
Gang Wang    
Quanzheng Wang    
Junyan Han    
Longfei Chen    
Bin Wang and Huili Shi    

Resumen

As one of the key technologies restricting the development of intelligent ships, autonomous collision avoidance has attracted the attention of many scholars all over the world. Existing research on collision-avoidance behavior focuses more on collision risk assessment and local path-planning methods for studies on the human-like sequential logic of the whole collision-avoidance process, as well as the decision-making process of various stages. Further in-depth thinking is needed urgently. Based on this, a construction method of a human-like sequential decision chain for the autonomous collision avoidance of unmanned ships is proposed through the construction of a collision-avoidance rule base and strategy set, efficient data access based on the Knowledge Graph concept, global collision risk assessment considering sequential decision process, and the construction of a complete collision-avoidance logic process to simulate the decision-making process of humans in complex multi-ship encounters in open waters. For multi-ship encounter scenarios, considering the sequential decision-making process of collision avoidance, a method was proposed to divide the collision risk of the target ship into direct collision risk and potential collision risk. The validity and reliability of the constructed sequential decision chain are verified by simulation experimental results. The results show that the method is effective for collision avoidance (especially multi-ship collision avoidance) in open waters and can provide a theoretical basis and technical support with good interpretability for the decision-making process of an unmanned ship?s autonomous collision avoidance.

 Artículos similares

       
 
Deokhee Won, Jihye Seo, Osoon Kwon, Hae-Young Park and Hyoun Kang    
The foundations of offshore wind power can be classified as floating, tripod, jacket, monopile, or gravity-based, depending on the support type. In the case of tripod- and jacket-type supports, the structures require precise construction. There are two m... ver más

 
Vinh Pham, Maxim Tyan, Tuan Anh Nguyen and Jae-Woo Lee    
Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity... ver más
Revista: Aerospace

 
Xiaokai Li, Xiaolong Zhang, Faming Zhang, Jian Huang, Shixiong Tang and Zhiqing Liu    
The mountainous areas of Southwest China have the characteristics of valley deep-cutting, a large topographic gradient, complex geological structures, etc. With the development of infrastructure construction in the area, the construction of bridges acros... ver más
Revista: Water

 
Wanyuan Zhang, Weijia Yuan, Gongwu Sun, Tengjiao He, Junqi Qu and Chao Xu    
The advancement of unmanned platforms is driving the miniaturization and cost reduction of the multi-beam echosounder (MBES). In the process of MBES array calibration, the mutual coupling significantly impacts the performance of parameter estimation. We ... ver más

 
Xin Wang, Deyou Liu, Ling Zhou and Chao Li    
The performance of wind turbines directly determines the profitability of wind farms. However, the complex environmental conditions and influences of various uncertain factors make it difficult to accurately assess and monitor the actual power generation... ver más
Revista: Applied Sciences