Inicio  /  Algorithms  /  Vol: 16 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Transfer Learning and Analogical Inference: A Critical Comparison of Algorithms, Methods, and Applications

Kara Combs    
Hongjing Lu and Trevor J. Bihl    

Resumen

Artificial intelligence and machine learning (AI/ML) research has aimed to achieve human-level performance in tasks that require understanding and decision making. Although major advances have been made, AI systems still struggle to achieve adaptive learning for generalization. One of the main approaches to generalization in ML is transfer learning, where previously learned knowledge is utilized to solve problems in a different, but related, domain. Another approach, pursued by cognitive scientists for several decades, has investigated the role of analogical reasoning in comparisons aimed at understanding human generalization ability. Analogical reasoning has yielded rich empirical findings and general theoretical principles underlying human analogical inference and generalization across distinctively different domains. Though seemingly similar, there are fundamental differences between the two approaches. To clarify differences and similarities, we review transfer learning algorithms, methods, and applications in comparison with work based on analogical inference. Transfer learning focuses on exploring feature spaces shared across domains through data vectorization while analogical inferences focus on identifying relational structure shared across domains via comparisons. Rather than treating these two learning approaches as synonymous or as independent and mutually irrelevant fields, a better understanding of how they are interconnected can guide a multidisciplinary synthesis of the two approaches.

 Artículos similares

       
 
David Naseh, Mahdi Abdollahpour and Daniele Tarchi    
This paper explores the practical implementation and performance analysis of distributed learning (DL) frameworks on various client platforms, responding to the dynamic landscape of 6G technology and the pressing need for a fully connected distributed in... ver más
Revista: Information

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI

 
Hassen Louati, Ali Louati, Rahma Lahyani, Elham Kariri and Abdullah Albanyan    
Responding to the critical health crisis triggered by respiratory illnesses, notably COVID-19, this study introduces an innovative and resource-conscious methodology for analyzing chest X-ray images. We unveil a cutting-edge technique that marries neural... ver más
Revista: Information

 
Hang Li, Shengjie Zhao and Hao Deng    
The extraction of community-scale green infrastructure (CSGI) poses challenges due to limited training data and the diverse scales of the targets. In this paper, we reannotate a training dataset of CSGI and propose a three-stage transfer learning method ... ver más
Revista: Information

 
Georgios Karantaidis and Constantine Kotropoulos    
The detection of computer-generated (CG) multimedia content has become of utmost importance due to the advances in digital image processing and computer graphics. Realistic CG images could be used for fraudulent purposes due to the deceiving recognition ... ver más
Revista: Information