ARTÍCULO
TITULO

PerTract: Model Extraction and Specification of Big Data Systems for Performance Prediction by the Example of Apache Spark and Hadoop

Johannes Kroß and Helmut Krcmar    

Resumen

Evaluating and predicting the performance of big data applications are required to efficiently size capacities and manage operations. Gaining profound insights into the system architecture, dependencies of components, resource demands, and configurations cause difficulties to engineers. To address these challenges, this paper presents an approach to automatically extract and transform system specifications to predict the performance of applications. It consists of three components. First, a system-and tool-agnostic domain-specific language (DSL) allows the modeling of performance-relevant factors of big data applications, computing resources, and data workload. Second, DSL instances are automatically extracted from monitored measurements of Apache Spark and Apache Hadoop (i.e., YARN and HDFS) systems. Third, these instances are transformed to model- and simulation-based performance evaluation tools to allow predictions. By adapting DSL instances, our approach enables engineers to predict the performance of applications for different scenarios such as changing data input and resources. We evaluate our approach by predicting the performance of linear regression and random forest applications of the HiBench benchmark suite. Simulation results of adjusted DSL instances compared to measurement results show accurate predictions errors below 15% based upon averages for response times and resource utilization.

 Artículos similares

       
 
Ching-Lung Fan    
The emergence of deep learning-based classification methods has led to considerable advancements and remarkable performance in image recognition. This study introduces the Multiscale Feature Convolutional Neural Network (MSFCNN) for the extraction of com... ver más

 
Dominik Warch, Patrick Stellbauer and Pascal Neis    
In the digital transformation era, video media libraries? untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal metho... ver más
Revista: Future Internet

 
Gulshan Saleem, Usama Ijaz Bajwa, Rana Hammad Raza and Fan Zhang    
Surveillance video analytics encounters unprecedented challenges in 5G and IoT environments, including complex intra-class variations, short-term and long-term temporal dynamics, and variable video quality. This study introduces Edge-Enhanced TempoFuseNe... ver más
Revista: Future Internet

 
Jiantao Qu, Chunyu Qi and He Meng    
Within the Shuo Huang Railway Company (Suning, China ) the long-term evolution for railways (LTE-R) network carries core wireless communication services for trains. The communication performance of LTE-R cells directly affects the operational safety of t... ver más
Revista: Future Internet

 
Ziyi Wang, Jinqing Jia, Lihua Zhang and Ziqi Li    
The direct-shear test is the primary method used to test the shear strength of transparent soil, but this experiment is complex and easily influenced by experimental conditions. In order to simplify the process of obtaining the shear strength of transpar... ver más
Revista: Buildings