ARTÍCULO
TITULO

Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges

Xueting Jin and Daoqin Tong    

Resumen

In the past few years, station-free bike sharing systems (SFBSSs) have been adopted in many cities worldwide. Different from conventional station-based bike sharing systems (SBBSSs) that rely upon fixed bike stations, SFBSSs allow users the flexibility to locate a bike nearby and park it at any appropriate site after use. With no fixed bike stations, the spatial extent/scale used to evaluate bike shortage/surplus in an SFBSS has been rather arbitrary in existing studies. On the one hand, a balanced status using large areas may contain multiple local bike shortage/surplus sites, leading to a less effective rebalancing design. On the other hand, an imbalance evaluation conducted in small areas may not be meaningful or necessary, while significantly increasing the computational complexity. In this study, we examine the impacts of analysis scale on the SFBSS imbalance evaluation and the associated rebalancing design. In particular, we develop a spatial optimization model to strategically optimize bike rebalancing in an SFBSS. We also propose a region decomposition method to solve large-sized bike rebalancing problems that are constructed based on fine analysis scales. We apply the approach to study the SFBSS in downtown Beijing. The empirical study shows that imbalance evaluation results and optimal rebalancing design can vary substantially with analysis scale. According to the optimal rebalancing results, bike repositioning tends to take place among neighboring areas. Based on the empirical study, we would recommend 800 m and 100/200 m as the suitable scale for designing operator-based and user-based rebalancing plans, respectively. Computational results show that the region decomposition method can be used to solve problems that cannot be handled by existing commercial optimization software. This study provides important insights into effective bike-share rebalancing strategies and urban bike transportation planning.

 Artículos similares

       
 
Kaiwen Song, Xiujuan Jiang, Tianye Wang, Dengming Yan, Hongshi Xu and Zening Wu    
The uneven spatial and temporal distribution of water resources has consistently been one of the most significant limiting factors for social development in many regions. Furthermore, with the intensification of climate change, this inequality is progres... ver más
Revista: Water

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi    
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm... ver más
Revista: Water

 
Mahsa Kashani, Stefan Jespersen and Zhenyu Yang    
The application of deoiling hydrocyclone systems as the downstream of three-phase gravity separator (TPGS) systems is one of the most commonly deployed produced water treatment processes in offshore oil and gas production. Due to the compact system?s com... ver más
Revista: Water

 
Diana Derepasko, Felix Witing, Francisco J. Peñas, José Barquín and Martin Volk    
The degree of success of river water diversion planning decisions is affected by uncertain environmental conditions. The adaptive water management framework incorporates this uncertainty at all stages of management. While the most effective form of adapt... ver más
Revista: Water