Resumen
This paper presents the operation of a remotely controlled, wheel-legged robot. The developed Wi-Fi connection framework is established on a popular ARM microcontroller board. The implementation provides a low-cost solution that is in congruence with the newest industrial standards. Additionally, the problem of limb structure and motor speed control is solved. The design process of the mechanical structure is enhanced by a nature-inspired metaheuristic optimization algorithm. An FOC-based BLDC motor speed control strategy is selected to guarantee dynamic operation of the drive. The paper provides both the theoretical considerations and the obtained prototype experimental results.