Resumen
Vitellogenesis is a pivotal reproductive process of the yolk formation in crustaceans. Vitellogenin (VTG) is the precursor of main yolk proteins and synthesized by endogenous estrogens. The intertidal mud crab (Macrophthalmus japonicus) inhabits sediment and is a good indicator for assessing polluted benthic environments. The purpose of this study was to identify potential responses of M. japonicus VTG under environmental stresses caused by chemical pollutants, such as 1, 10, and 30 µg L-1 concentrations in di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA) and irgarol. We characterized the M. japonicus VTG gene and analyzed the transcriptional expression of VTG mRNA in M. japonicus exposed to various chemicals and exposure periods. A phylogenetic analysis revealed that the M. japonicus VTG clustered closely with Eriocheir sinensis (Chinese mitten crab) VTG, in contrast with another clade that included the VTG ortholog of other crabs. The basal level of VTG expression was the highest in the hepatopancreas and ovaries, and tissues. VTG expression significantly increased in the ovaries and hepatopancreas after 24 h exposure to DEHP. Increased responses of VTG transcripts were found in M. japonicus exposed to DEHP and BPA for 96 h; however, VTG expression decreased in both tissues after irgarol exposure. After an exposure of 7 d, VTG expression significantly increased in the ovaries and hepatopancreas for all concentrations of all chemicals. These results suggest that the crustacean embryogenesis and endocrine processes are impaired by the environmental chemical pollutants DEHP, BPA, and irgarol.