Inicio  /  Applied Sciences  /  Vol: 13 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Image Clustering Based on Label Similarity and Maximizing Mutual Information across Views

Feng Peng and Kai Li    

Resumen

Most existing deep image clustering methods use only class-level representations for clustering. However, the class-level representation alone is not sufficient to describe the differences between images belonging to the same cluster. This may lead to high intra-class representation differences, which will harm the clustering performance. To address this problem, this paper proposes a clustering model named Deep Image Clustering based on Label Similarity and Maximizing Mutual Information Across Views (DCSM). DCSM consists of a backbone network, class-level and instance-level mapping block. The class-level mapping block learns discriminative class-level features by selecting similar (dissimilar) pairs of samples. The proposed extended mutual information is to maximize the mutual information between features extracted from views that were obtained by using data augmentation on the same image and as a constraint on the instance-level mapping block. This forces the instance-level mapping block to capture high-level features that affect multiple views of the same image, thus reducing intra-class differences. Four representative datasets are selected for our experiments, and the results show that the proposed model is superior to the current advanced image clustering models.

 Artículos similares

       
 
Fadi Shaar, Arif Yilmaz, Ahmet Ercan Topcu and Yehia Ibrahim Alzoubi    
Recognizing aircraft automatically by using satellite images has different applications in both the civil and military sectors. However, due to the complexity and variety of the foreground and background of the analyzed images, it remains challenging to ... ver más
Revista: Applied Sciences

 
Chih-Yung Chen, Shang-Feng Lin, Yuan-Wei Tseng, Zhe-Wei Dong and Cheng-Han Cai    
Remote coffee grinder burr wear level assessment system.
Revista: Applied Sciences

 
Jingxiong Lei, Xuzhi Liu, Haolang Yang, Zeyu Zeng and Jun Feng    
High-resolution remote sensing images (HRRSI) have important theoretical and practical value in urban planning. However, current segmentation methods often struggle with issues like blurred edges and loss of detailed information due to the intricate back... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences