Inicio  /  Applied Sciences  /  Vol: 13 Par: 19 (2023)  /  Artículo
ARTÍCULO
TITULO

Effects of Ca2+ Ions on the Localized Corrosion of Carbon Steel Influence of the Associated Anion

Verónica Viviana Acosta and Gustavo Luis Bianchi    

Resumen

The corrosion rate of carbon steel under the attack of electrolytic mediums saturated by CO2 at a working temperature of 65 °C under dynamic conditions is studied in this paper. The effect of Ca2+ ions on corrosion rates and their dependency on the associated anion (Cl- or CO32-) with respect to the Ca2+ cation and Na+ are also assessed. A potentiostat/galvanostat associated with a rotor stator in an AISI 1040 steel-ring configuration, rotating at 600 rpm, was used. A linear polarization-resistance technique was applied to calculate the corrosion rate. It is found that the corrosion rate depends not only on the presence of Ca2+, but also on the salt anion added to the electrolytic medium. There was a strong inhibitory effect of the corrosion in the presence of Ca2+ in chloride-free mediums because of an ankerite deposition with a lower solubility compared to siderite. Moreover, it was observed that, even if the corrosion rate increased together with the Cl- concentration, its value depended on the cation introducing the anion. It was higher when Cl- was associated with Na+ compared to when it was associated with Ca2+. We found the following decreasing order in the carbon steel corrosion rate: 2% NaCl + 1380 ppm CaCl2 > 2% NaCl > 2% NaCl + 1360 ppm Na2CO3 > 2% NaCl + 1.25 g/L CaCO3 > 1450 ppm of NaCl > 1380 ppm CaCl2 > 1360 ppm Na2CO3 > 500 ppm CaCl2 > 424 ppm Na2CO3 >> 1.250 g/L CaCO3.