Inicio  /  Applied Sciences  /  Vol: 11 Par: 12 (2021)  /  Artículo
ARTÍCULO
TITULO

Linear and Nonlinear Normal Interface Stiffness in Dry Rough Surface Contact Measured Using Longitudinal Ultrasonic Waves

Saeid Taghizadeh and Robert Sean Dwyer-Joyce    

Resumen

When two rough surfaces are loaded together contact occurs at asperity peaks. An interface of solid contact regions and air gaps is formed that is less stiff than the bulk material. The stiffness of a structure thus depends on the interface conditions; this is particularly critical when high stiffness is required, for example in precision systems such as machine tool spindles. The rough surface interface can be modelled as a distributed spring. For small deformation, the spring can be assumed to be linear; whilst for large deformations the spring gets stiffer as the amount of solid contact increases. One method to measure the spring stiffness, both the linear and nonlinear aspect, is by the reflection of ultrasound. An ultrasonic wave causes a perturbation of the contact and the reflection depends on the stiffness of the interface. In most conventional applications, the ultrasonic wave is low power, deformation is small and entirely elastic, and the linear stiffness is measured. However, if a high-powered ultrasonic wave is used, this changes the geometry of the contact and induces nonlinear response. In previous studies through transmission methods were used to measure the nonlinear interfacial stiffness. This approach is inconvenient for the study of machine elements where only one side of the interface is accessible. In this study a reflection method is undertaken, and the results are compared to existing experimental work with through transmission. The variation of both linear and nonlinear interfacial stiffnesses was measured as the nominal contact pressure was increased. In both cases interfacial stiffness was expressed as nonlinear differential equations and solved to deduce the contact pressure-relative surface approach relationships. The relationships derived from linear and nonlinear measurements were similar, indicating the validity of the presented methods.

 Artículos similares

       
 
Lin Guo, Anand Balu Nellippallil, Warren F. Smith, Janet K. Allen and Farrokh Mistree    
When dealing with engineering design problems, designers often encounter nonlinear and nonconvex features, multiple objectives, coupled decision making, and various levels of fidelity of sub-systems. To realize the design with limited computational resou... ver más
Revista: Algorithms

 
Ioannis K. Argyros, Santhosh George, Samundra Regmi and Christopher I. Argyros    
Iterative algorithms requiring the computationally expensive in general inversion of linear operators are difficult to implement. This is the reason why hybrid Newton-like algorithms without inverses are developed in this paper to solve Banach space-valu... ver más
Revista: Algorithms

 
Elias Gravanis, Evangelos Akylas and Ernestos Nikolas Sarris    
We construct approximate analytical solutions of the Boussinesq equation for horizontal unconfined aquifers in the buildup phase under constant recharge and zero-inflow conditions. We employ a variety of methods, which include wave solutions, self-simila... ver más
Revista: Water

 
Husniddin Khayrullaev, Issa Omle and Endre Kovács    
We systematically investigate the performance of numerical methods to solve Fisher?s equation, which contains a linear diffusion term and a nonlinear logistic term. The usual explicit finite difference algorithms are only conditionally stable for this eq... ver más
Revista: Computation

 
Cesare Patuelli, Enrico Cestino and Giacomo Frulla    
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior ... ver más
Revista: Aerospace