Resumen
The field of Flexible Manufacturing Systems (FMS) has seen in recent years a dynamic development trend and can now be considered an integral part of intelligent manufacturing systems and a basis for digital manufacturing. Developing the factory of the future in an increasingly competitive industrial environment involves the study and analysis of some FMS key elements and managerial, technical, and innovative efforts. Using a new approach, thus paper presents a material flow design methodology for flexible manufacturing systems in order to establish the optimal architecture of the analyzed system. The research offers a solution for modeling and optimizing material flows in advanced manufacturing systems. By using a dedicated analysis and simulation software, the structure of the system can be established and specific technical and economic parameters can be determined for each processing and transport capacity. Different processing scenarios will be evaluated through virtual modeling and simulations in order to increase the performance and efficiency of the system. Thus, an interactive tool useful in the design and management of flexible manufacturing lines will be developed for companies operating in the industrial sector. The application of this paper is mainly in the field of development of intelligent manufacturing systems, where the control system will make and use simulations in order to analyze current parameters and to predict the future.