Resumen
Mapping and understanding the differences in land cover and land use over time is an essential component of decision-making in sectors such as resource management, urban planning, and forest fire management, as well as in tracking of the impacts of climate change. Existing methods sometimes pose a barrier to the effective monitoring of changes in land cover and land use, since a threshold parameter is often needed and determined based on trial and error. This study aimed to develop an automatic and operational method for change detection on a large scale from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Super pixels were the basic unit of analysis instead of traditional individual pixels. T2 tests based on the feature vectors of temporal Normalized Difference Vegetation Index (NDVI) and land surface temperature were used for change detection. The developed method was applied to data over a predominantly vegetated area in northern Ontario, Canada spanning 120,000 sq. km from 2001?2016. The accuracies ranged between 78% and 88% for the NDVI-based test, from 74% to 86% for the LST-based test, and from 70% to 86% for the joint method compared with manual interpretation. Our proposed method for detecting land cover change provides a functional and viable alternative to existing methods of land cover change detection as it is reliable, repeatable, and free from uncertainty in establishing a threshold for change.