Inicio  /  Algorithms  /  Vol: 16 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Enhancing Cryptocurrency Price Forecasting by Integrating Machine Learning with Social Media and Market Data

Loris Belcastro    
Domenico Carbone    
Cristian Cosentino    
Fabrizio Marozzo and Paolo Trunfio    

Resumen

Since the advent of Bitcoin, the cryptocurrency landscape has seen the emergence of several virtual currencies that have quickly established their presence in the global market. The dynamics of this market, influenced by a multitude of factors that are difficult to predict, pose a challenge to fully comprehend its underlying insights. This paper proposes a methodology for suggesting when it is appropriate to buy or sell cryptocurrencies, in order to maximize profits. Starting from large sets of market and social media data, our methodology combines different statistical, text analytics, and deep learning techniques to support a recommendation trading algorithm. In particular, we exploit additional information such as correlation between social media posts and price fluctuations, causal connection among prices, and the sentiment of social media users regarding cryptocurrencies. Several experiments were carried out on historical data to assess the effectiveness of the trading algorithm, achieving an overall average gain of 194% without transaction fees and 117% when considering fees. In particular, among the different types of cryptocurrencies considered (i.e., high capitalization, solid projects, and meme coins), the trading algorithm has proven to be very effective in predicting the price trends of influential meme coins, yielding considerably higher profits compared to other cryptocurrency types.

 Artículos similares

       
 
Achini Adikari, Su Nguyen, Rashmika Nawaratne, Daswin De Silva and Damminda Alahakoon    
The proliferation of online hotel review platforms has prompted decision-makers in the hospitality sector to acknowledge the significance of extracting valuable information from this vast source. While contemporary research has primarily focused on extra... ver más
Revista: Applied Sciences

 
Andra Sandu, Ioana Ioana?, Camelia Delcea, Margareta-Stela Florescu and Liviu-Adrian Cotfas    
Fake news is an explosive subject, being undoubtedly among the most controversial and difficult challenges facing society in the present-day environment of technology and information, which greatly affects the individuals who are vulnerable and easily in... ver más
Revista: Algorithms

 
Eike Blomeier, Sebastian Schmidt and Bernd Resch    
In the early stages of a disaster caused by a natural hazard (e.g., flood), the amount of available and useful information is low. To fill this informational gap, emergency responders are increasingly using data from geo-social media to gain insights fro... ver más
Revista: Information

 
Kevin K. W. Ho and Shaoyu Ye    
The COVID-19 pandemic heightened concerns about health and safety, leading people to seek information to protect themselves from infection. Even before the pandemic, false health information was spreading on social media. We conducted a review of recent ... ver más
Revista: Information

 
Shifeng Chen, Jialin Wang and Ketai He    
The popularization of the internet and the widespread use of smartphones have led to a rapid growth in the number of social media users. While information technology has brought convenience to people, it has also given rise to cyberbullying, which has a ... ver más
Revista: Information