Inicio  /  Applied Sciences  /  Vol: 12 Par: 14 (2022)  /  Artículo
ARTÍCULO
TITULO

Sample-Efficient Deep Learning Techniques for Burn Severity Assessment with Limited Data Conditions

Hyunkyung Shin    
Hyeonung Shin    
Wonje Choi    
Jaesung Park    
Minjae Park    
Euiyul Koh and Honguk Woo    

Resumen

The automatic analysis of medical data and images to help diagnosis has recently become a major area in the application of deep learning. In general, deep learning techniques can be effective when a large high-quality dataset is available for model training. Thus, there is a need for sample-efficient learning techniques, particularly in the field of medical image analysis, as significant cost and effort are required to obtain a sufficient number of well-annotated high-quality training samples. In this paper, we address the problem of deep neural network training under sample deficiency by investigating several sample-efficient deep learning techniques. We concentrate on applying these techniques to skin burn image analysis and classification. We first build a large-scale, professionally annotated dataset of skin burn images, which enables the establishment of convolutional neural network (CNN) models for burn severity assessment with high accuracy. We then deliberately set data limitation conditions and adapt several sample-efficient techniques, such as transferable learning (TL), self-supervised learning (SSL), federated learning (FL), and generative adversarial network (GAN)-based data augmentation, to those conditions. Through comprehensive experimentation, we evaluate the sample-efficient deep learning techniques for burn severity assessment, and show, in particular, that SSL models learned on a small task-specific dataset can achieve comparable accuracy to a baseline model learned on a six-times larger dataset. We also demonstrate the applicability of FL and GANs to model training under different data limitation conditions that commonly occur in the area of healthcare and medicine where deep learning models are adopted.

 Artículos similares

       
 
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo    
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M... ver más
Revista: Information

 
Maryan Rizinski, Andrej Jankov, Vignesh Sankaradas, Eugene Pinsky, Igor Mishkovski and Dimitar Trajanov    
The task of company classification is traditionally performed using established standards, such as the Global Industry Classification Standard (GICS). However, these approaches heavily rely on laborious manual efforts by domain experts, resulting in slow... ver más
Revista: Information

 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Nawaf Alharbi, Mustafa Youldash, Duha Alotaibi, Haya Aldossary, Reema Albrahim, Reham Alzahrani, Wahbia Ahmed Saleh, Sunday O. Olatunji and May Issa Aldossary    
Fetal hypoxia is a condition characterized by a lack of oxygen supply in a developing fetus in the womb. It can cause potential risks, leading to abnormalities, birth defects, and even mortality. Cardiotocograph (CTG) monitoring is among the techniques t... ver más
Revista: AI

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences