Inicio  /  Applied Sciences  /  Vol: 14 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

New Approaches of Stochastic Models to Examine the Vibration Features in Roller Bearings

Saima Bhatti    
Asif Ali Shaikh    
Asif Mansoor and Murtaza Hussain    

Resumen

Machinery components undergo wear and tear over time due to regular usage, necessitating the establishment of a robust prognosis framework to enhance machinery health and avert catastrophic failures. This study focuses on the collection and analysis of vibration data obtained from roller bearings experiencing various fault conditions. By employing a combination of techniques sourced from existing literature, distinct configurations within vibration datasets were examined to pinpoint the primary defects in roller bearings. The significant features identified through this analysis were utilized to formulate optimized stochastic model equations. These models, developed separately for inner and outer race fault features in comparison to healthy bearing features under random conditions, offer valuable insights into machinery prognosis. The application of these models aids in effective maintenance management, optimization of machinery performance, and the minimization of catastrophic failures and downtime, thereby contributing to overall machinery reliability.

 Artículos similares

       
 
Mihai Crengani?, Radu-Eugen Breaz, Sever-Gabriel Racz, Claudia-Emilia Gîrjob, Cristina-Maria Biri?, Adrian Maro?an and Alexandru Bârsan    
This scientific paper presents the development and validation process of a dynamic model in Simulink used for decision-making regarding the locomotion and driving type of autonomous omnidirectional mobile platforms. Unlike traditional approaches relying ... ver más
Revista: Applied Sciences

 
Fengwei Jing, Fenghe Li, Yong Song, Jie Li, Zhanbiao Feng and Jin Guo    
The concept of production stability in hot strip rolling encapsulates the ability of a production line to consistently maintain its output levels and uphold the quality of its products, thus embodying the steady and uninterrupted nature of the production... ver más
Revista: Algorithms

 
Suryakant Tyagi and Sándor Szénási    
Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers t... ver más
Revista: Algorithms

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
MohammadMoein Shafi, Arash Habibi Lashkari, Vicente Rodriguez and Ron Nevo    
The distributed denial of service attack poses a significant threat to network security. Despite the availability of various methods for detecting DDoS attacks, the challenge remains in creating real-time detectors with minimal computational overhead. Ad... ver más
Revista: Information