Resumen
This study demonstrates that an induced bank filter (IBF) system can treat raw water polluted with Escherichia coli (E. coli) bacteria. Similar to riverbank filtration (RBF), induced or reversed bank filtration relies on natural processes to clean water, including filtration through layers of allochthone alluvial sediments and a bioactive layer that forms on top of the filter after a ripening period. At the study site, located in Southwestern India, villagers rely on a mountain spring for their water supply. Although of generally high quality, the spring water contains E. coli bacteria (up to ~2000 MPN/100 mL). Raw water diverted from this spring was gravity-fed into the IBF system, which consisted of a (1) flow regulator, (2) pre-filter and (3) the actual IBF filter. Designed and constructed based on pilot testing of prototype filters, a full-scale filter (5 m by 7 m by 2 m) was built and its performance and maintenance requirements were studied during both the monsoon season and the dry season. The data show that the IBF significantly improved the water quality. Turbidity and E. coli concentrations were reduced to or below the detection limit (approximately 2.5 log unit reduction). During the peak of the monsoon season (August), E. coli was present in the IBF effluent after a storm destroyed the cover of the IBF tank. The IBF construction and maintenance costs were documented. Extrapolated over a 10-year period, the cost of IBF water was 3 and 10 times lower than reverse osmosis or water supplied by truck, respectively. This study demonstrates that IBF can be part of an affordable water supply system for rural villages in mountainous terrain where conventional RBF systems cannot be installed or where other water treatment technologies are out of financial reach.