Inicio  /  Algorithms  /  Vol: 16 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Hybrid Recommender System for the Tourism Domain

Georgios Chalkiadakis    
Ioannis Ziogas    
Michail Koutsmanis    
Errikos Streviniotis    
Costas Panagiotakis and Harris Papadakis    

Resumen

In this paper, we develop a novel hybrid recommender system for the tourism domain, which combines (a) a Bayesian preferences elicitation component which operates by asking the user to rate generic images (corresponding to generic types of POIs) in order to build a user model and (b) a novel content-based (CB) recommendations component. The second component can in fact itself be considered a hybrid among two different CB algorithms, each exploiting one of two semantic similarity measures: a hierarchy-based and a non-hierarchy based one. The latter is the recently introduced Weighted Extended Jaccard Similarity (WEJS). We note that WEJS is employed for the first time within a recommender algorithm. We incorporate our algorithm within a real, already available at Google Play, tour-planning mobile application for short-term visitors of the popular touristic destination of Agios Nikolaos, Crete, Greece, and evaluate our approach via extensive simulations conducted on a real-world dataset constructed for the needs of the aforementioned mobile application. Our experiments verify that our algorithms result in effective personalized recommendations of touristic points of interest, while our final hybrid algorithm outperforms our exclusively content-based recommender algorithms in terms of recommendations accuracy. Specifically, when comparing the performance of several hybrid recommender system variants, we are able to come up with a ?winner?: the most preferable variant of our hybrid recommender algorithm is one using a ?four elicitation slates, six shown images per slate? pair as input to its Bayesian elicitation component. This variant combines increased precision performance with a lightweight preferences elicitation process.

 Artículos similares

       
 
Jing Luo, Yuhang Zhang, Jiayuan Zhuang and Yumin Su    
The development of intelligent task allocation and path planning algorithms for unmanned surface vehicles (USVs) is gaining significant interest, particularly in supporting complex ocean operations. This paper proposes an intelligent hybrid algorithm tha... ver más

 
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett    
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ... ver más
Revista: Algorithms

 
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water

 
Nosa Aikodon, Sandra Ortega-Martorell and Ivan Olier    
Patients in Intensive Care Units (ICU) face the threat of decompensation, a rapid decline in health associated with a high risk of death. This study focuses on creating and evaluating machine learning (ML) models to predict decompensation risk in ICU pat... ver más
Revista: Algorithms

 
Alireza Rezvanian, S. Mehdi Vahidipour and Ali Mohammad Saghiri    
Artificial immune systems (AIS), as nature-inspired algorithms, have been developed to solve various types of problems, ranging from machine learning to optimization. This paper proposes a novel hybrid model of AIS that incorporates cellular automata (CA... ver más
Revista: Algorithms