Inicio  /  Applied Sciences  /  Vol: 13 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Transfer Learning-Based Animal Face Identification Model Empowered with Vision-Based Hybrid Approach

Munir Ahmad    
Sagheer Abbas    
Areej Fatima    
Ghassan F. Issa    
Taher M. Ghazal and Muhammad Adnan Khan    

Resumen

The importance of accurate livestock identification for the success of modern livestock industries cannot be overstated as it is essential for a variety of purposes, including the traceability of animals for food safety, disease control, the prevention of false livestock insurance claims, and breeding programs. Biometric identification technologies, such as thumbprint recognition, facial feature recognition, and retina pattern recognition, have been traditionally used for human identification but are now being explored for animal identification as well. Muzzle patterns, which are unique to each animal, have shown promising results as a primary biometric feature for identification in recent studies. Muzzle pattern image scanning is a widely used method in biometric identification, but there is a need to improve the efficiency of real-time image capture and identification. This study presents a novel identification approach using a state-of-the-art object detector, Yolo (v7), to automate the identification process. The proposed system consists of three stages: detection of the animal?s face and muzzle, extraction of muzzle pattern features using the SIFT algorithm and identification of the animal using the FLANN algorithm if the extracted features match those previously registered in the system. The Yolo (v7) object detector has mean average precision of 99.5% and 99.7% for face and muzzle point detection, respectively. The proposed system demonstrates the capability to accurately recognize animals using the FLANN algorithm and has the potential to be used for a range of applications, including animal security and health concerns, as well as livestock insurance. In conclusion, this study presents a promising approach for the real-time identification of livestock animals using muzzle patterns via a combination of automated detection and feature extraction algorithms.

 Artículos similares

       
 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman    
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri... ver más
Revista: Applied Sciences

 
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen and Timo Ojala    
Diagnosing knee joint osteoarthritis (KOA), a major cause of disability worldwide, is challenging due to subtle radiographic indicators and the varied progression of the disease. Using deep learning for KOA diagnosis requires broad, comprehensive dataset... ver más
Revista: Algorithms

 
Jiwun Yoon, Sang-Yong Lee and Ji-Yong Lee    
Humans share a similar body structure, but each individual possesses unique characteristics, which we define as one?s body type. Various classification methods have been devised to understand and assess these body types. Recent research has applied artif... ver más
Revista: Applied Sciences

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences