Resumen
Drought is a creeping phenomenon whose effects evolve with time, yet the start and end is often only clear in the hindsight. The present study assessed drought conditions using two categories of drought indicators computed from precipitation data sets measured by weather stations across the Western Cape Province, South Africa for the period 1985 to 2016. The first category was the Standardized Precipitation Index (SPI) accumulated over 3-, 6- and 12-months (hereafter of SPI-3, SPI-6 and SPI-12 respectively). The second category consists of the four Drought Monitoring Indicators (DMI) i.e., Drought Duration (DD), Severity (DS), Intensity (DI) and Frequency (DF). Firstly, analysis of SPI-3, SPI-6 and SPI-12 illustrate that between 1985 and 2016, the Western Cape Province experienced recurrent mild drought conditions. This suggests that the drought conditions experienced during 2015/2016 hydrological year (hereafter current) in the Western Cape Province is a manifestation of past drought conditions. Secondly, analysis of trends in DMI series depict a noticeable spatial-temporal dependence wherein the southern and western regions experienced more severe droughts compared to the eastern and northern regions of the Western Cape Province. Results also show that the DMI trends exhibit up to ~8% variability over the past decade. Overall, the current drought conditions in the Western Cape Province continues to adversely affect agricultural production while the water reservoirs are at below 30% capacity implying that the socio-economic impacts of these droughts will continue to reverberate for many months to come. Though the on-going drought conditions in the Western Cape Province is a regular part of nature?s cycle, analysis of historical drought characteristics based on drought indicators is an important first step towards placing the current drought conditions into perspective, and contribute to triggering action and response thereof. All these lay the foundation for drought monitoring and contribute towards the development of drought early warning.