Resumen
Dam safety requirements have become stronger in recent years, highlighting, among other issues, the need to increase the discharge capacity of existing spillways and the protection of embankment dams against potential overtopping, which are particularly threatened by the hydrological consequences of climate change. The current economic situation requires solutions that ensure the safety of these infrastructures at an affordable cost. Wedge-shaped blocks (WSBs) are one of these solutions. A more detailed understanding of the performance of WSBs was the objective of this work and, based on this, the evolution of WSB design. An extensive empirical test program was performed, registering hydrodynamic pressures on the block faces and leakage through the joints between blocks and their air vents. A new WSB (named ACUÑA) with a different design of air vents was tested in comparison to Armorwedge?, which was used as a reference case. Moreover, the hydraulic behavior of the WSB was analyzed according to the saturation state of the granular drainage layer. The ACUÑA unit was designed with air vents in the upper part of the riser where the registered negative pressures were higher. Negative pressures were also measured at the base of the block when the granular drainage layer was not fully saturated. Finally, the beneficial effect of sealing some of the joints between blocks was quantified.