Resumen
Cloud computing has been a dominant computing paradigm for many years. It provides applications with computing, storage, and networking capabilities. Furthermore, it enhances the scalability and quality of service (QoS) of applications and offers the better utilization of resources. Recently, these advantages of cloud computing have deteriorated in quality. Cloud services have been affected in terms of latency and QoS due to the high streams of data produced by many Internet of Things (IoT) devices, smart machines, and other computing devices joining the network, which in turn affects network capabilities. Content delivery networks (CDNs) previously provided a partial solution for content retrieval, availability, and resource download time. CDNs rely on the geographic distribution of cloud servers to provide better content reachability. CDNs are perceived as a network layer near cloud data centers. Recently, CDNs began to perceive the same degradations of QoS due to the same factors. Fog computing fills the gap between cloud services and consumers by bringing cloud capabilities close to end devices. Fog computing is perceived as another network layer near end devices. The adoption of the CDN model in fog computing is a promising approach to providing better QoS and latency for cloud services. Therefore, a fog-based CDN framework capable of reducing the load time of web services was proposed in this paper. To evaluate our proposed framework and provide a complete set of tools for its use, a fog-based browser was developed. We showed that our proposed fog-based CDN framework improved the load time of web pages compared to the results attained through the use of the traditional CDN. Different experiments were conducted with a simple network topology against six websites with different content sizes along with a different number of fog nodes at different network distances. The results of these experiments show that with a fog-based CDN framework offloading autonomy, latency can be reduced by 85% and enhance the user experience of websites.