Resumen
At times, hydrological drought is defined using Q90 or Q95 (90% or 95% flows equaling or exceeding) or even at higher levels, such as Q75 as the cutoff level regardless of their seasonal variation (i.e., truncation at the uniform flow level). In the past, the estimation of drought length and magnitude at the aforesaid uniform cutoff levels of flow has been a challenging issue. A procedure is presented to first estimate the drought magnitude (M), which then forms the basis for estimating the drought duration or length (L). The drought magnitude (M) and the length of the critical period (Lcr) are estimated using the concept of behavior analysis prevalent in the hydrologic design of reservoirs. This information is used for estimating the drought length (LT-e', the estimated value of drought length for the return period of T weeks) involving a Markov chain model on the standardized weekly flow sequences. A weighted average of Lcr and LT-e' (=0.60 Lcr + 0.40 LT-e') results in the estimate of drought length, which is compatible to the observed counterpart. The performance of the procedure to estimate drought length was found to be satisfactory up to the truncation level of Q75, whereas the estimation of drought magnitude was rated as good.