Inicio  /  Future Internet  /  Vol: 15 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

An Artificial Neural Network Autoencoder for Insider Cyber Security Threat Detection

Karthikeyan Saminathan    
Sai Tharun Reddy Mulka    
Sangeetha Damodharan    
Rajagopal Maheswar and Josip Lorincz    

Resumen

The COVID-19 pandemic made all organizations and enterprises work on cloud platforms from home, which greatly facilitates cyberattacks. Employees who work remotely and use cloud-based platforms are chosen as targets for cyberattacks. For that reason, cyber security is a more concerning issue and is now incorporated into almost every smart gadget and has become a prerequisite in every software product and service. There are various mitigations for external cyber security attacks, but hardly any for insider security threats, as they are difficult to detect and mitigate. Thus, insider cyber security threat detection has become a serious concern in recent years. Hence, this paper proposes an unsupervised deep learning approach that employs an artificial neural network (ANN)-based autoencoder to detect anomalies in an insider cyber security attack scenario. The proposed approach analyzes the behavior of the patterns of users and machines for anomalies and sends an alert based on a set security threshold. The threshold value set for security detection is calculated based on reconstruction errors that are obtained through testing the normal data. When the proposed model reconstructs the user behavior without generating sufficient reconstruction errors, i.e., no more than the threshold, the user is flagged as normal; otherwise, it is flagged as a security intruder. The proposed approach performed well, with an accuracy of 94.3% for security threat detection, a false positive rate of 11.1%, and a precision of 89.1%. From the obtained experimental results, it was found that the proposed method for insider security threat detection outperforms the existing methods in terms of performance reliability, due to implementation of ANN-based autoencoder which uses a larger number of features in the process of security threat detection.

 Artículos similares

       
 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Tapan Chatterjee, Usha Rani Gogoi, Animesh Samanta, Ayan Chatterjee, Mritunjay Kumar Singh and Srinivas Pasupuleti    
Groundwater quality is one of the major concerns. Quality of the groundwater directly impacts human health, growth of plants and vegetables. Due to the severe impacts of inadequate water quality, it is imperative to find a swift and economical solution. ... ver más
Revista: Water

 
Dominik Warch, Patrick Stellbauer and Pascal Neis    
In the digital transformation era, video media libraries? untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal metho... ver más
Revista: Future Internet

 
Marcin Aftowicz, Ievgen Kabin, Zoya Dyka and Peter Langendörfer    
While IoT technology makes industries, cities, and homes smarter, it also opens the door to security risks. With the right equipment and physical access to the devices, the attacker can leverage side-channel information, like timing, power consumption, o... ver más
Revista: Future Internet