Inicio  /  Applied Sciences  /  Vol: 9 Par: 5 (2019)  /  Artículo
ARTÍCULO
TITULO

Efficient Demulsification of Acidic Oil-In-Water Emulsions with Silane-Coupled Modified TiO2 Pillared Montmorillonite

Gaohong Zuo    
Yingchao Du    
Lianqi Wei    
Bo Yu    
Shufeng Ye    
Xiaomeng Zhang and Hongshun Hao    

Resumen

Emulsified pickling waste liquid, derived from cleaning oily hardware, cause serious environmental and ecological issues. In this work, a series of grafted (3-aminopropyl)triethoxysilane (APTES) TiO2 pillared montmorillonite (Mt), Ti-Mt-APTES, are prepared and characterized for their assessment in demulsification of acidic oil-in-water emulsion. After titanium hydrate is introduced through ion exchange, montmorillonite is modified by hydrophobic groups coming from APTES. The Ti-Mt-APTES in acidic oil-in-water emulsion demulsification performance and mechanism are studied. Results show that the prepared Ti-Mt-APTES has favorable demulsification performance. The Ti-Mt-APTES demulsification efficiency (ED) increased to an upper limit value when the mass ratio of APTES to the prepared TiO2 pillared montmorillonite (Ti-Mt) (RA/M) was 0.10 g/g, and the 5 h is the optimal continuous stirring time for breaking the acidic oil-in-water emulsion by Ti-Mt-APTES. The ED increased to 94.8% when 2.5 g/L of Ti-Mt-APTES is added into the acidic oil-in-water emulsion after 5 h. An examination of the demulsification mechanism revealed that amphiphilicity and electrostatic interaction both played vital roles in oil-in-water separation. It is demonstrated that Ti-Mt-APTES is a promising, economical demulsifier for the efficient treatment of acidic oil-in-water emulsions.

 Artículos similares