ARTÍCULO
TITULO

A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding

Hang Yu    
Yixi Zhao    
Chongben Ni    
Jinhong Ding    
Tao Zhang    
Ran Zhang and Xintian Jiang    

Resumen

The diverse nature of hull components in shipbuilding has created a demand for intelligent robots capable of performing various tasks without pre-teaching or template-based programming. Visual perception of a target?s outline is crucial for path planning in robotic edge grinding and other processes. Providing the target?s outline from point cloud or image data is essential for autonomous programming, requiring a high-performance algorithm to handle large amounts of data in real-time construction while preserving geometric details. The high computational cost of triangulation has hindered real-time industrial applications, prompting efforts to improve efficiency. To address this, a new improvement called Directive Searching has been proposed to enhance search efficiency by directing the search towards the target triangle cell and avoiding redundant searches. Another improvement, Heritable Initial, reduces the search amount by inheriting the start position from the last search. Combining Directive Searching and Heritable Initial into a new method called DSHI has led to a significant efficiency advancement, with a calculation efficiency improvement of nearly 300?3000 times compared to the ordinary Bowyer?Watson method. In terms of outlines extraction, DSHI has improved the extraction efficiency by 4?16 times compared to the ordinary Bowyer?Watson methods, while ensuring stable outlines results, and has also increased the extraction efficiency by 2?4 times compared to PCL. The DSHI method is also applied to actual ship component edge-grinding equipment, and its effect meets the shipbuilding process requirements. It could be inferred that the new method has potential applications in shipbuilding and other industries, offering satisfying efficiency and robustness for tasks such as automatic edge grinding.

 Artículos similares

       
 
Kai Xue and Tingyi Wu    
This paper addresses the formation motion control of heterogeneous multi-agent unmanned systems via a distributed consensus approach. The considered heterogeneous system consisted of unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs). A... ver más

 
Xiong Zou, Wenqiang Zhan, Changshi Xiao, Chunhui Zhou, Qianqian Chen, Tiantian Yang and Xin Liu    
The demand for non-powered facility towing is increasing with the development of large-scale offshore projects. It is of great interest for its safe operation to measure the state of the towing process in real time. This paper proposed a computer vision ... ver más

 
Feiren Wang, Enli Lü, Yu Wang, Guangjun Qiu and Huazhong Lu    
The autonomous navigation of unmanned vehicles in GPS denied environments is an incredibly challenging task. Because cameras are low in price, obtain rich information, and passively sense the environment, vision based simultaneous localization and mappin... ver más
Revista: Applied Sciences

 
Ran Wang, Xin Wang, Mingming Zhu and Yinfu Lin    
Autonomous underwater vehicles (AUVs) are widely used, but it is a tough challenge to guarantee the underwater location accuracy of AUVs. In this paper, a novel method is proposed to improve the accuracy of vision-based localization systems in feature-po... ver más
Revista: Applied Sciences

 
Lidia María Belmonte, Rafael Morales and Antonio Fernández-Caballero    
Personal assistant robots provide novel technological solutions in order to monitor people?s activities, helping them in their daily lives. In this sense, unmanned aerial vehicles (UAVs) can also bring forward a present and future model of assistant robo... ver más
Revista: Applied Sciences