Inicio  /  Applied Sciences  /  Vol: 12 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Fault Diagnosis of Induction Motors with Imbalanced Data Using Deep Convolutional Generative Adversarial Network

Hong-Chan Chang    
Yi-Che Wang    
Yu-Yang Shih and Cheng-Chien Kuo    

Resumen

A homemade defective model of an induction motor was created by the laboratory team to acquire the vibration acceleration signals of five operating states of an induction motor under different loads. Two major learning models, namely a deep convolutional generative adversarial network (DCGAN) and a convolutional neural network, were applied for fault diagnosis of the induction motor to the problem of an imbalanced training dataset. Two datasets were studied and analyzed: a sufficient and balanced training dataset and insufficient and imbalanced training data. When the training datasets were adequate and balanced, time?frequency analysis was advantageous for fault diagnosis at different loads, with the diagnostic accuracy achieving 95.06% and 96.38%. For the insufficient and imbalanced training dataset, regardless of the signal preprocessing method, the more imbalanced the training dataset, the lower the diagnostic accuracy was for the testing dataset. Samples generated by DCGAN were found to exhibit 80% similarity with the actual data through comparison. By oversampling the imbalanced dataset, DCGAN achieved a 90% diagnostic accuracy, close to the accuracy achieved using a balanced dataset. Among all oversampling techniques, the pro-balanced method yielded the optimal result. The diagnostic accuracy reached 85% in the cross-load test, indicating that the generated data had successfully learned the different fault features that validate the DCGAN?s ability to learn parts of input signals.

 Artículos similares

       
 
Yong Liu, Jialin Zhou, Dong Zhang, Shaoyu Wei, Mingshun Yang and Xinqin Gao    
To solve the problem of low diagnostic accuracy caused by the scarcity of fault samples and class imbalance in the fault diagnosis task of box-type substations, a fault diagnosis method based on self-attention improvement of conditional tabular generativ... ver más
Revista: Applied Sciences

 
Qiang Cheng, Yong Cao, Zhifeng Liu, Lingli Cui, Tao Zhang and Lei Xu    
The computer numerically controlled (CNC) system is the key functional component of CNC machine tool control systems, and the servo drive system is an important part of CNC systems. The complex working environment will lead to frequent failure of servo d... ver más
Revista: Applied Sciences

 
Hongfeng Gao, Tiexin Xu, Renlong Li and Chaozhi Cai    
Because the gearbox in transmission systems is prone to failure and the fault signal is not obvious, the fault end cannot be located. In this paper, a gearbox fault diagnosis method grounded on improved complete ensemble empirical mode decomposition with... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences