ARTÍCULO
TITULO

Random Forest Variable Importance Measures for Spatial Dynamics: Case Studies from Urban Demography

Marina Georgati    
Henning Sten Hansen and Carsten Keßler    

Resumen

Population growth in urban centres and the intensification of segregation phenomena associated with international mobility require improved urban planning and decision-making. More effective planning in turn requires better analysis and geospatial modelling of residential locations, along with a deeper understanding of the factors that drive the spatial distribution of various migrant groups. This study examines the factors that influence the distribution of migrants at the local level and evaluates their importance using machine learning, specifically the variable importance measures produced by the random forest algorithm. It is conducted on high spatial resolution (100×100" role="presentation" style="position: relative;">100×100100×100 100 × 100 grid cells) register data in Amsterdam and Copenhagen, using demographic, housing and neighbourhood attributes for 2018. The results distinguish the ethnic and demographic composition of a location as an important factor in the residential distribution of migrants in both cities. We also examine whether certain migrant groups pay higher prices in the most attractive areas, using spatial statistics and mapping for 2008 and 2018. We find evidence of segregation in both cities, with Western migrants having higher purchasing power than non-Western migrants in both years. The method sheds light on the determinants of migrant distribution in destination cities and advances our understanding of the application of geospatial artificial intelligence to urban dynamics and population movements.

 Artículos similares

       
 
Tingwei Meng, Xiaofang Shan, Zhigang Ren and Qinli Deng    
Environmental problems including the depletion of natural resources and energy have drawn a lot of attention from all sectors of society in the context of high-quality global development, and solid waste generated by the construction industry accounts fo... ver más
Revista: Buildings

 
Chenxi Liu, Zhenghong Peng, Lingbo Liu and Hao Wu    
Amid the global shift towards sustainable development, this study addresses the burgeoning electric vehicle (EV) market and its infrastructure challenges, particularly the lag in public charging facility development. Focusing on Wuhan, it utilizes big da... ver más

 
Alireza Hajiheidari, Mahmoud Reza Delavar and Abbas Rajabifard    
Enriching and updating maps are among the most important tasks of any urban management organization for informed decision making. Urban cadastral map enrichment is a time-consuming and costly process, which needs an expert?s opinion for quality control. ... ver más

 
Dhiaa Musleh, Ali Alkhwaja, Ibrahim Alkhwaja, Mohammed Alghamdi, Hussam Abahussain, Mohammed Albugami, Faisal Alfawaz, Said El-Ashker and Mohammed Al-Hariri    
Obesity is increasingly becoming a prevalent health concern among adolescents, leading to significant risks like cardiometabolic diseases (CMDs). The early discovery and diagnosis of CMD is essential for better outcomes. This study aims to build a reliab... ver más

 
Abderrazzaq Kharroubi, Zouhair Ballouch, Rafika Hajji, Anass Yarroudh and Roland Billen    
Railway scene understanding is crucial for various applications, including autonomous trains, digital twining, and infrastructure change monitoring. However, the development of the latter is constrained by the lack of annotated datasets and limitations o... ver más
Revista: Infrastructures