ARTÍCULO
TITULO

Application of the Machine Learning LightGBM Model to the Prediction of the Water Levels of the Lower Columbia River

Min Gan    
Shunqi Pan    
Yongping Chen    
Chen Cheng    
Haidong Pan and Xian Zhu    

Resumen

Due to the strong nonlinear interaction with river discharge, tides in estuaries are characterised as nonstationary and their mechanisms are yet to be fully understood. It remains highly challenging to accurately predict estuarine water levels. Machine learning methods, which offer a unique ability to simulate the unknown relationships between variables, have been increasingly used in a large number of research areas. This study applies the LightGBM model to predicting the water levels along the lower reach of the Columbia River. The model inputs consist of the discharges from two upstream rivers (Columbia and Willamette Rivers) and the tide characteristics, including the tide range at the estuary mouth (Astoria) and tide constituents. The model is optimized with the selected parameters. The results show that the LightGBM model can achieve high prediction accuracy, with the root-mean-square-error values of water level being reduced to 0.14 m and the correlation coefficient and skill score being in the ranges of 0.975?0.987 and 0.941?0.972, respectively, which are statistically better than those obtained from physics-based models such as the nonstationary tidal harmonic analysis model (NS_TIDE). The importance of subtide constituents in interacting with the river discharge in the estuary is clearly revealed from the model results.

 Artículos similares

       
 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Sadiq Gbagba, Lorenzo Maccioni and Franco Concli    
In the shipbuilding, construction, automotive, and aerospace industries, welding is still a crucial manufacturing process because it can be utilized to create massive, intricate structures with exact dimensional specifications. These kinds of structures ... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
George Papageorgiou, Vangelis Sarlis and Christos Tjortjis    
This study utilized advanced data mining and machine learning to examine player injuries in the National Basketball Association (NBA) from 2000?01 to 2022?23. By analyzing a dataset of 2296 players, including sociodemographics, injury records, and financ... ver más
Revista: Information

 
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal    
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit... ver más
Revista: Information