Resumen
Today, the world continuously investigates the promising potential of advanced and optimized technologies for harvesting green renewable energy sources, such as a solar tracking system (STS). This study presents an actual implementation of a single-axis solar tracking system (SAST), where an azimuth control scheme is developed to precisely follow the sun?s orientation. This is demonstrated by computing in real-time the optimal azimuth angle based on the actual altitude, date, and time using an embedded microcontroller. At the same time, experimental comparisons using the azimuth-based control method compared with the proportional, integral, derivative (PID) control scheme and fixed-tilt PV systems (FTPV) are derived. Experimental results show that the developed azimuth solar tracker can autonomously follow the sun?s orientation primarily from time and location-based information and independent from the actual solar irradiance. Nevertheless, the electrical energies gained from all three tested systems revealed that using the sensor-based STS would increase the net energy production by 12.68% compared to the azimuth-based SAST, with an energy production increase of 7.7%. In addition, energy consumption by the azimuth-based STS is 65% greater than the energy consumption of a sensor-based STS due to the continuous movements of the tracker, regardless of the increase or change in power production within short periods.