Resumen
To investigate the effect of the pure coal/rock strength on the mechanical behavior, failure behavior, and energy evolution of coal-rock combined (CRC) specimens, an AG-X250 Shimadzu Precision Universal Test was used to conduct uniaxial compressive loading, uniaxial cyclic loading, and unloading compression experiments on pure coal, pure rock, and different CRC specimens. The results show that the uniaxial compressive strength, Young?s modulus, and peak strain of the CRC specimen mainly depend on the coal specimen instead of the rock strength. The major failure modes of CRC were the shearing fracture and axial splitting failure, and for the CRC specimen with the same hard rock, the CRC specimen severely failed due to axial splitting cracks. In addition, the released elastic energy Ue, dissipated energy Ud, and kinetic energy Ur increase with increasing rock mass/coal strength, and for CRC specimen with the same coal, the greater the difference in strength between the rock and coal is, the greater the kinetic energy is.