Resumen
This paper concerns the effect of friction on crack propagation for the centrally cracked Brazilian disk under diametric forces by using a modified finite element method. It shows that the mode II stress intensity factor decreases obviously with the increase of friction after the crack is closed, while friction has no influence on the stress intensity factor of mode I and T-stress. Meanwhile, there are some significant influences on the crack propagation due to the change of the friction after the crack is closed with the appropriate loading angle and relative length of the crack. When T-stress is positive, the effect of friction becomes obvious and the crack propagation angle increases with a lager friction coefficient. With increasing the friction, the deviation for the crack propagation trajectory increases and the curvature of path decreases, which may lead to the change of crack type. Additionally, the larger relative crack length can amplify the effect of friction, which is similar to the loading angle.