Resumen
Abstract text summarization aims to offer a highly condensed and valuable information that expresses the main ideas of the text. Most previous researches focus on extractive models. In this work, we put forward a new generative model based on convolutional seq2seq architecture. A hierarchical CNN framework is much more efficient than the conventional RNN seq2seq models. We also equip our model with a copying mechanism to deal with the rare or unseen words. Additionally, we incorporate a hierarchical attention mechanism to model the keywords and key sentences simultaneously. Finally we verify our model on two real-life datasets, GigaWord and DUC corpus. The experiment results verify the effectiveness of our model as it outperforms state-of-the-art alternatives consistently and statistical significantly.