Resumen
Cost-competitiveness of offshore wind depends heavily in its capacity to switch preventive maintenance to condition-based maintenance. That is, to monitor the actual condition of the wind turbine (WT) to decide when and which maintenance needs to be done. In particular, structural health monitoring (SHM) to monitor the foundation (support structure) condition is of utmost importance in offshore-fixed wind turbines. In this work a SHM strategy is presented to monitor online and during service a WT offshore jacket-type foundation. Standard SHM techniques, as guided waves with a known input excitation, cannot be used in a straightforward way in this particular application where unknown external perturbations as wind and waves are always present. To face this challenge, a vibration-response-only SHM strategy is proposed via machine learning methods. In this sense, the fractal dimension is proposed as a suitable feature to identify and classify different types of damage. The proposed proof-of-concept technique is validated in an experimental laboratory down-scaled jacket WT foundation undergoing different types of damage.