ARTÍCULO
TITULO

Propagation Velocity of Excitation Waves Caused by Turbidity Currents

Guohui Xu    
Shiqing Sun    
Yupeng Ren    
Meng Li and Zhiyuan Chen    

Resumen

Turbidity currents are important carriers for transporting terrestrial sediment into the deep sea, facilitating the transfer of matter and energy between land and the deep sea. Previous studies have suggested that turbidity currents can exhibit high velocities during their movement in submarine canyons. However, the maximum vertical descent velocity of high-concentration turbid water simulating turbidity currents does not exceed 1 m/s, which does not support the understanding that turbidity currents can reach speeds of over twenty meters per second in submarine canyons. During their movement, turbidity currents can compress and push the water ahead, generating propagating waves. These waves, known as excitation waves, exert a force on the seafloor, resuspending bottom sediments and potentially leading to the generation of secondary turbidity currents downstream. Therefore, the propagation distance of excitation waves is not the same as the initial journey of the turbidity currents, and the velocity of excitation waves within this journey has been mistakenly regarded as the velocity of the turbidity currents. Research on the propagation velocity of excitation waves is of great significance for understanding the sediment supply patterns of turbidity currents and the transport patterns of deep-sea sediments. In this study, numerical simulations were conducted to investigate the velocity of excitation waves induced by turbidity currents and to explore the factors that can affect their propagation velocity and amplitude. The relationship between the velocity and amplitude of excitation waves and different influencing factors was determined. The results indicate that the propagation velocity of excitation waves induced by turbidity currents is primarily determined by the water depth, and an expression (v2 = 0.63gh) for the propagation velocity of excitation waves is provided.

 Artículos similares

       
 
Alessandro Polla, Giacomo Frulla, Enrico Cestino, Raj Das and Pier Marzocca    
The presented methodology offers the author?s view on how to bridge the gap between the numerical evaluation and physical response of a typical composite panel under high-velocity impact. A rational approach to failure conditions and progressive damage p... ver más
Revista: Aerospace

 
Jinrong Bao, Chenzhen Ji, Deng Pan, Chao Zong, Ziyang Zhang and Tong Zhu    
The propagation mechanism of flow disturbance under acoustic excitations plays a crucial role in thermoacoustic instability, especially when considering the effect of non-premixed combustion on heat release due to reactant mixing and diffusion. This rela... ver más
Revista: Aerospace

 
Mengyu Li, Xizeng Zhao, Mingjian Yin, Yiyang Zong, Jinyou Lu, Shiming Yao, Geng Qu and Hualong Luan    
The interaction between solitary waves and underwater barriers is investigated using our in-house code, entitled VPM (volume-average/point-value multi-moment)?THINC/QQ (THINC method with quadratic surface representation and Gaussian quadrature)-coupled m... ver más

 
Arno Duijster, Arno Volker, Frenk Van den Berg and Carola Celada-Casero    
The applicability of laser ultrasonics for the determination of grain size and phase composition in steels under different temperatures was investigated. This was done by obtaining the velocity and attenuation of propagating ultrasonic waves in a simulat... ver más
Revista: Applied Sciences

 
Katsuya Nakamura, Yoshikazu Kobayashi, Kenichi Oda and Satoshi Shigemura    
Acoustic emission (AE) source localization has been used to visualize progress failures generated in a wide variety of materials. In the conventional approaches, AE source localization algorithms assume that the AE signal is propagated as a straight line... ver más
Revista: Applied Sciences