ARTÍCULO
TITULO

Quantifying Estuarine Hydrometeorological Coastal Hazards Using a Combined Field Observation and Modeling Approach

Stephanie M. Dohner and Carter B. DuVal    

Resumen

Coastal development and its associated site management have rapidly expanded to estuarine environments while continuing to increase worldwide. With the growth of coastal management projects, field observations are required to understand how anthropogenic construction, coastal defense, environmental restoration, and conservation areas will react to the typical, extreme, and long-term conditions at the proposed sites. To address these unknowns, we present a multi-faceted coastal risk assessment of a unique, recently nourished estuarine beach near the mouth of the Delaware Bay Estuary by merging rapid-response remote sensing platforms, hydrodynamic models, and publically available monitoring datasets. Specifically, hydrometeorological events from 2015 to 2019 were the focus of peak-over-threshold statistics, event type definition, and clustered event interval determination. The 95th percentile thresholds were determined to be the following: 0.84 m for the significant wave height, 13.5 m/s for the 10-m elevation wind speed, and 0.4 m for the total water level residuals. Tropical and extra-tropical cyclones, light gales, or cold and stationary fronts proved to be the meteorological causes of the sediment mobility, inducing the hydrodynamics at the site. Using these event types and exceedance instances, clustered meteorological events were defined as having an interval greater than twelve hours but less than five days to be considered clustered. Clustered events were observed to cause greater volumetric change than individual events, and are currently underrepresented in coastal risk planning and response in the region. Coastal monitoring field measurements should consider clustered events when conducting post-hazardous or erosional event response surveys. This work highlights the importance of clustered hydrometeorological events causing estuarine coastal risk, and how to quantify these effects through combined field observations and modeling approaches.

 Artículos similares

       
 
Kees Nederhoff, Sean C. Crosby, Nate R. Van Arendonk, Eric E. Grossman, Babak Tehranirad, Tim Leijnse, Wouter Klessens and Patrick L. Barnard    
The Puget Sound Coastal Storm Modeling System (PS-CoSMoS) is a tool designed to dynamically downscale future climate scenarios (i.e., projected changes in wind and pressure fields and temperature) to compute regional water levels, waves, and compound flo... ver más
Revista: Water

 
Ángela Fontán-Bouzas, Tiago Abreu, Caroline C. Ferreira, Paulo A. Silva, Laura López-Olmedilla, José Guitián, Ana M. Bernabeu and Javier Alcántara-Carrió    
The morphological responses of two mesotidal beaches located in different coastal settings (embayed and open sandy beaches) on the northwestern Iberian coast were monitored during the winter of 2018/19. The offshore wave time series analysis is related t... ver más

 
Tingting Fan, Yuchen Wang, Zhiguo Xu, Lining Sun, Peitao Wang and Jingming Hou    
Tsunami monitoring and early warning systems are mainly established to deal with seismogenic tsunamis generated by sudden seafloor fault displacement. However, a global tsunami triggered by the 2022 Tonga volcanic eruption promoted the need for tsunami e... ver más

 
David A. White and Jenneke M. Visser    
Deltaic landscapes go through cycles of birth, growth, decline, and death governed by intertwined geological, biological, and ecological processes. In this study, we tracked deltaic lobes in the Balize Mississippi River Delta, Louisiana, USA, over 28 yea... ver más
Revista: Water

 
Boxiang Tang and T. W. Gallien    
Urban coastal flooding is a global humanitarian and socioeconomic hazard. Rising sea levels will increase the likelihood of hydrologic events interacting with high marine water levels. These compound events may, in turn, nonlinearly interact with urban i... ver más