ARTÍCULO
TITULO

On the Effect of Wave Direction on Control and Performance of a Moored Pitching Wave Energy Conversion System

Bruno Paduano    
Nicolás Faedo and Giuliana Mattiazzo    

Resumen

In the pathways towards the commercialisation of wave energy systems, the need for reliable mathematical models is of paramount importance for the design and synthesis of model-based control techniques to maximise the performance of wave energy converters (WECs). Furthermore, these offshore marine systems are held in position by the use of mooring systems, which have recently been analysed beyond survivability conditions to investigate their influence on control synthesis and device performance. In this study, we delve into the complex challenge of incorporating relevant mooring dynamics in defining a representative control action while also examining the influence of wave directionality on the overall procedure. For the specific case of a spread mooring system, where the hull cannot weathervane and operates based on directionality, control synthesis must be performed taking into account this characteristic of the resource. In this context, because it is able to harvest energy from only the bow-directed waves, the PeWEC is considered as a representative case study. The control synthesis is realised using a tailored data-based model, and device performance is evaluated across different site conditions while accounting for wave direction. Among our overall conclusions, we show that neglecting the directionality of the wave resource for the PeWEC case study can lead to an overestimation of device performance of up to 50%" role="presentation">50%50% 50 % , even though a prevalent wave direction exists at the site.

 Artículos similares

       
 
Bingbing Wan, Yuyun Shi and Zhifu Li    
The interaction problem of waves with a body floating near the marginal ice zone is studied, where the marginal ice zone is modeled as an array of multiple uniformly sized floating ice sheets. The linear velocity potential theory is applied for fluid flo... ver más

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Morhaf Aljber, Han Soo Lee, Jae-Soon Jeong and Jonathan Salar Cabrera    
In tsunami studies, understanding the intricate dynamics in the swash area, characterised by the shoaling effect, remains a challenge. In this study, we employed the adaptive mesh refinement (AMR) method to model tsunami inundation and propagation in the... ver más

 
Hung Vuong Pham, Maria Katherina Dal Barco, Mohsen Pourmohammad Shahvar, Elisa Furlan, Andrea Critto and Silvia Torresan    
The coastal environment is vulnerable to natural hazards and human-induced stressors. The assessment and management of coastal risks have become a challenging task, due to many environmental and socio-economic risk factors together with the complex inter... ver más

 
Carlos Astudillo-Gutierrez, Iván Cáceres Rabionet, Vicente Gracia Garcia, Joan Pau Sierra Pedrico and Agustín Sánchez-Arcilla Conejo    
An analysis of the interactions between wave-induced velocities and seagrass meadows has been conducted based on the large-scale CIEM wave flume data. Incident irregular wave trains act on an initial 1:15 sand beach profile with measurement stations from... ver más