Inicio  /  Water  /  Vol: 10 Par: 6 (2018)  /  Artículo
ARTÍCULO
TITULO

Conceptual Framework and Computational Research of Hierarchical Residential Household Water Demand

Wenxiang Pan    
Baodeng Hou    
Ruixiang Yang    
Xuzhu Zhan    
Wenkai Tian    
Baoqi Li    
Weihua Xiao    
Jianhua Wang    
Yuyan Zhou    
Yong Zhao and Xuerui Gao    

Resumen

Although the quantity of household water consumption does not account for a huge proportion of the total water consumption amidst socioeconomic development, there has been a steadily increasing trend due to population growth and improved urbanization standards. As such, mastering the mechanisms of household water demand, scientifically predicting trends of household water demand, and implementing reasonable control measures are key focuses of current urban water management. Based on the categorization and characteristic analysis of household water, this paper used Maslow?s Hierarchy of Needs to establish a level and grade theory of household water demand, whereby household water is classified into three levels (rigid water demand, flexible water demand, and luxury water demand) and three grades (basic water demand, reasonable water demand, and representational water demand). An in-depth analysis was then carried out on the factors that influence the computation of household water demand, whereby equations for different household water categories were established, and computations for different levels of household water were proposed. Finally, observational experiments on household water consumption were designed, and observation and simulation computations were performed on three typical households in order to verify the scientific outcome and rationality of the computation of household water demand. The research findings contribute to the enhancement and development of prediction theories on water demand, and they are of high theoretical and realistic significance in terms of scientifically predicting future household water demand and fine-tuning the management of urban water resources.

 Artículos similares

       
 
Livinia Saputra, Sang Hyun Kim, Kyung-Jin Lee, Seo Jin Ki, Ho Young Jo, Seunghak Lee and Jaeshik Chung    
The vadose zone acts as a natural buffer against groundwater contamination, and thus, its attenuation capacity (AC) directly affects groundwater vulnerability to pollutants. A regression model from the previous study predicting the overall AC of soils ag... ver más
Revista: Hydrology

 
Gricelda Herrera-Franco, Lady Bravo-Montero, Jhon Caicedo-Potosí and Paúl Carrión-Mero    
The excessive use of energy from fossil fuels, which corresponds to population, industrialisation, and unsustainable economic growth, is the cause of carbon dioxide production and climate change. The Water?Energy?Food (WEF) nexus is an applicable concept... ver más
Revista: Water

 
Domenik Radeck, Felix He-Mao Hsu, Florian Janke, Gabriele Semino, Tim Hofmann, Sebastian Rink and Agnes Jocher    
The hyperloop concept envisions a low pressure tube and capsules, called pods, traveling at the speed of commercial aircraft as a sustainable, future-proof mass transportation system between cities. However, in contrast to the use case of such a system, ... ver más

 
Angelos Filippatos, Dionysios Markatos, Georgios Tzortzinis, Kaushik Abhyankar, Sonia Malefaki, Maik Gude and Spiros Pantelakis    
The current prevailing trend in design across key sectors prioritizes eco-design, emphasizing considerations of environmental aspects in the design process. The present work aims to take a significant leap forward by proposing a design process where sust... ver más
Revista: Aerospace

 
Claudia Yohana Arias-Portela, Jaime Mora-Vargas and Martha Caro    
The conceptual framework for assessing the situational awareness (SA) of drivers consists of three hierarchical levels: perception of the elements of the environment, comprehension of the elements, and decision-making in the near future. A common challen... ver más
Revista: Applied Sciences