Resumen
The investigation of wave climate is of primary concern for the successful implementation of offshore aquaculture systems as waves can cause significant loads on them. Up until now, site selection and design (or selection) of offshore cage system structures on extended sea areas do not seem to follow any specific guidelines. This paper presents a novel methodology for the identification of favorable sites for offshore aquaculture development in an extended sea area based on two important technical factors: (i) the detailed characterization of the wave climate, and (ii) the water depth. Long-term statistics of the significant wave height, peak wave period, and wave steepness are estimated on an annual and monthly temporal scale, along with variability measures. Extreme value analysis is applied to estimate the design values and associated return periods of the significant wave height; structures should be designed based on this data, to avoid partial or total failure. The Eastern Mediterranean Sea is selected as a case study, and long-term time series of wave spectral parameters from the ERA5 dataset are utilized. Based on the obtained results, the most favorable areas for offshore aquaculture installations have been identified.