Inicio  /  Buildings  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Data-Driven Based Prediction of the Energy Consumption of Residential Buildings in Oshawa

Yaolin Lin    
Jingye Liu    
Kamiel Gabriel    
Wei Yang and Chun-Qing Li    

Resumen

Buildings consume about 40% of the global energy. Building energy consumption is affected by multiple factors, including building physical properties, performance of the mechanical system, and occupants? activities. The prediction of building energy consumption is very complicated in actual practice. Accurate and fast prediction of the building energy consumption is very important in building design optimization and sustainable energy development. This paper evaluates 24 energy consumption models for 83 houses in Oshawa, Canada. The energy consumption, social and demographic information of the occupants, and the physical properties of the houses were collected through smart metering, a phone survey, and an energy audit. A total of 63 variables were determined, and based on the variable importance, three groups with different numbers of variables were selected, i.e., 26, 12, and 6 for electricity consumption; and 26, 13, and 6 for gas consumption. A total of eight data-driven algorithms, namely Multiple Linear Regression (MLR), Stepwise Regression (SR), Support Vector Machine (SVM), Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFN), Classification and Regression Tree (CART), Chi-Square Automatic Interaction Detector (CHAID), and Exhaustive CHAID (ECHAID), were used to develop energy prediction models. The results show that the BPNN model has the best accuracies in predicting both the annual electricity consumption and gas consumption, with mean absolute percentage errors (MAPEs) of 0.94% and 0.94% for training and validation data for electricity consumption, and 2.63% and 0.16% for gas consumption, respectively.

 Artículos similares

       
 
Davide Fronzi, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini and Alberto Tazioli    
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at var... ver más
Revista: Water

 
Shiva Gopal Shrestha and Soni M. Pradhanang    
The general practice of rainfall-runoff model development towards physically based and spatially explicit representations of hydrological processes is data-intensive and computationally expensive. Physically based models such as the Soil Water Assessment... ver más
Revista: Water

 
Jeongeun Won, Jiyu Seo, Jeonghoon Lee, Jeonghyeon Choi, Yoonkyung Park, Okjeong Lee and Sangdan Kim    
River runoff predictions in ungauged basins are one of the major challenges in hydrology. In the past, the approach using a physical-based conceptual model was the main approach, but recently, a solution using a data-driven model has been evaluated as mo... ver más
Revista: Water

 
Yuting Liu, Wenchong Tian, Jun Xie, Weizhong Huang and Kunlun Xin    
With the increasing demands for higher treatment efficiency, better effluent quality, and energy conservation in Urban Wastewater Treatment Plants (WWTPs), research has already been conducted to construct an optimized control system for Anaerobic-Anoxic-... ver más
Revista: Water

 
Siyu Qi, Minxue He, Raymond Hoang, Yu Zhou, Peyman Namadi, Bradley Tom, Prabhjot Sandhu, Zhaojun Bai, Francis Chung, Zhi Ding, Jamie Anderson, Dong Min Roh and Vincent Huynh    
Salinity management in estuarine systems is crucial for developing effective water-management strategies to maintain compliance and understand the impact of salt intrusion on water quality and availability. Understanding the temporal and spatial variatio... ver más
Revista: Water