Inicio  /  Applied Sciences  /  Vol: 12 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Susceptibility to Expansive Reactions of a Greener UHPC: Micro to Macro-Scale Study

Ana Mafalda Matos    

Resumen

Nowadays, in Europe, several infrastructures, such as bridges, viaducts, and maritime structures, are in an advanced state of degradation. Therefore, novel repair/rehabilitation techniques are sought. Recent advances in ultra-high-performance fibre-reinforced cement-based composites (UHPFRC) represent a significant step towards resilient structures. In addition to their remarkable mechanical properties (compressive strength > 150 MPa), they present extremely low permeability and, as a premise, very high durability. Despite their relatively high cost, UHPFRC can be a competitive solution for rehabilitation/strengthening applications where smaller volumes are needed. UHPFRC applied in thin layers (with or without reinforcement) can replace carbonated and/or cracked concrete acting as a protective watertight and/or strengthening layer. The structural capacity increases (stiffness, ultimate strength), and the durability is expected to improve significantly while keeping cross-sectional dimensions. Additional advantages are expected, such as reduced intervention time, fewer maintenance routines, reduced life-cycle cost, and longer service life. Although much of the focus on UHPFRC has centred on mechanical and/or structural performance, durability is inevitably linked with mechanical properties. The current work evaluated the durability of non-property and greener UHPC concerning expansive reactions, alkali-silica reactions and expansion due to external sulphates, by macro and micro-scale integrative study. Linear expansion tests were performed in UHPC specimens according to ASTM C 1260 and LNEC E-364. At the macro level, no deleterious expansion due to ASR or external sulphate occured. Expansion due to ASR was 0.0018% after 14 days of immersion in an alkali-rich environment, and no expansion was recorded regarding sulphate attack. However, SEM analysis reveals reactive products of ASR and sulphate attack, namely, ASR gel and ettringite, respectively, in UHPC specimens.

Palabras claves

 Artículos similares