Resumen
Nowadays, in Europe, several infrastructures, such as bridges, viaducts, and maritime structures, are in an advanced state of degradation. Therefore, novel repair/rehabilitation techniques are sought. Recent advances in ultra-high-performance fibre-reinforced cement-based composites (UHPFRC) represent a significant step towards resilient structures. In addition to their remarkable mechanical properties (compressive strength > 150 MPa), they present extremely low permeability and, as a premise, very high durability. Despite their relatively high cost, UHPFRC can be a competitive solution for rehabilitation/strengthening applications where smaller volumes are needed. UHPFRC applied in thin layers (with or without reinforcement) can replace carbonated and/or cracked concrete acting as a protective watertight and/or strengthening layer. The structural capacity increases (stiffness, ultimate strength), and the durability is expected to improve significantly while keeping cross-sectional dimensions. Additional advantages are expected, such as reduced intervention time, fewer maintenance routines, reduced life-cycle cost, and longer service life. Although much of the focus on UHPFRC has centred on mechanical and/or structural performance, durability is inevitably linked with mechanical properties. The current work evaluated the durability of non-property and greener UHPC concerning expansive reactions, alkali-silica reactions and expansion due to external sulphates, by macro and micro-scale integrative study. Linear expansion tests were performed in UHPC specimens according to ASTM C 1260 and LNEC E-364. At the macro level, no deleterious expansion due to ASR or external sulphate occured. Expansion due to ASR was 0.0018% after 14 days of immersion in an alkali-rich environment, and no expansion was recorded regarding sulphate attack. However, SEM analysis reveals reactive products of ASR and sulphate attack, namely, ASR gel and ettringite, respectively, in UHPC specimens.