Inicio  /  Applied Sciences  /  Vol: 12 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

A Hybrid Bald Eagle Search Algorithm for Time Difference of Arrival Localization

Weili Liu    
Jing Zhang    
Wei Wei    
Tao Qin    
Yuanchen Fan    
Fei Long and Jing Yang    

Resumen

The technology of wireless sensor networks (WSNs) is developing rapidly, and it has been applied in diverse fields, such as medicine, environmental control, climate prediction, monitoring, etc. Location is one of the critical fields in WSNs. Time difference of arrival (TDOA) has been widely used to locate targets because it has a simple model, and it is easy to implement. Aiming at the problems of large deviation and low accuracy of the nonlinear equation solution for TDOA, many metaheuristic algorithms have been proposed to address the problems. By analyzing the available literature, it can be seen that the swarm intelligence metaheuristic has achieved remarkable results in this domain. The aim of this paper is to achieve further improvements in solving the localization problem by TDOA. To achieve this goal, we proposed a hybrid bald eagle search (HBES) algorithm, which can improve the performance of the bald eagle search (BES) algorithm by using strategies such as chaotic mapping, Lévy flight, and opposition-based learning. To evaluate the performance of HBES, we compared HBES with particle swarm algorithm, butterfly optimization algorithm, COOT algorithm, Grey Wolf algorithm, and sine cosine algorithm based on 23 test functions. The comparison results show that the proposed algorithm has better search performance than other reputable metaheuristic algorithms. Additionally, the HBES algorithm was used to solve the TDOA location problem by simulating the deployment of different quantities of base stations in a noise situation. The results show that the proposed method can obtain more consistent and precise locations of unknown target nodes in the TDOA localization than that of others.

 Artículos similares