Resumen
This paper presents a control strategy to regulate voltage and share reactive power from distributed generators in a microgrid when electric vehicles (EVs) are connected and disconnected at different nodes and times. The control strategy considers fixed and variable virtual impedances created in the microgrid (MG) when loads change (EVs are connected or disconnected). Fixed virtual impedance is related to the distance from each house to the power inverter and is used as an input of the primary control. Variable virtual impedance is associated with the distance from each EV to the power inverter and is also used as an input of the primary control. Thus, the control of the inverter seeks to regulate the voltage where the EVs create variations in the network. The results show that the control strategy regulates well the voltage of different nodes, and the reactive power is distributed to renewable generators based on the distance from the loads to the inverters. By considering the fixed and variable virtual impedances in the primary control, voltage can be regulated, assuming various consumptions of EVs in the network. This result is promising for reactive power control and sharing for each distributed generator (DG) in a microgrid where a great number of EVs affect the operation.