Resumen
NB-PLC (narrowband power line communication) is a method of data communication that involves superimposing a relatively high-frequency signal (9 kHz to 500 kHz), which contains data, onto the power grid?s low frequency (50 to 60 Hz) signal. While using the existing power grid as a transmission medium is convenient, the power grid was not designed for this purpose, leading to challenges such as conducted emissions and infrastructure limitations. To overcome these technical challenges, passive filters are necessary. This article presents the design, simulation (using scattering parameters), and evaluation of an NB-PLC filter by comparing it to commercially available filters. Our proposed design and benchmarking methods enable the accurate prediction of the filter?s behavior in field conditions. After comparing our filter with commercially available filters, we observed that it exhibits superior characteristics. Specifically, our filter has the best insertion loss versus frequency, achieved three times higher attenuation at 50 kHz (-130 dB) compared to the best commercially available filter (-40 dB), and has a power consumption of 0.6 W, which is comparable to the most power-efficient commercial filter (0.5 W). Additionally, our filter has the second best input and output impedance of 3.6 ? within the frequency range of 35?95 kHz.