Inicio  /  Agriculture  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Detection Method of Cow Estrus Behavior in Natural Scenes Based on Improved YOLOv5

Rong Wang    
Zongzhi Gao    
Qifeng Li    
Chunjiang Zhao    
Ronghua Gao    
Hongming Zhang    
Shuqin Li and Lu Feng    

Resumen

Natural breeding scenes have the characteristics of a large number of cows, complex lighting, and a complex background environment, which presents great difficulties for the detection of dairy cow estrus behavior. However, the existing research on cow estrus behavior detection works well in ideal environments with a small number of cows and has a low inference speed and accuracy in natural scenes. To improve the inference speed and accuracy of cow estrus behavior in natural scenes, this paper proposes a cow estrus behavior detection method based on the improved YOLOv5. By improving the YOLOv5 model, it has stronger detection ability for complex environments and multi-scale objects. First, the atrous spatial pyramid pooling (ASPP) module is employed to optimize the YOLOv5l network at multiple scales, which improves the model?s receptive field and ability to perceive global contextual multiscale information. Second, a cow estrus behavior detection model is constructed by combining the channel-attention mechanism and a deep-asymmetric-bottleneck module. Last, K-means clustering is performed to obtain new anchors and complete intersection over union (CIoU) is used to introduce the relative ratio between the predicted box of the cow mounting and the true box of the cow mounting to the regression box prediction function to improve the scale invariance of the model. Multiple cameras were installed in a natural breeding scene containing 200 cows to capture videos of cows mounting. A total of 2668 images were obtained from 115 videos of cow mounting events from the training set, and 675 images were obtained from 29 videos of cow mounting events from the test set. The training set is augmented by the mosaic method to increase the diversity of the dataset. The experimental results show that the average accuracy of the improved model was 94.3%, that the precision was 97.0%, and that the recall was 89.5%, which were higher than those of mainstream models such as YOLOv5, YOLOv3, and Faster R-CNN. The results of the ablation experiments show that ASPP, new anchors, C3SAB, and C3DAB designed in this study can improve the accuracy of the model by 5.9%. Furthermore, when the ASPP dilated convolution was set to (1,5,9,13) and the loss function was set to CIoU, the model had the highest accuracy. The class activation map function was utilized to visualize the model?s feature extraction results and to explain the model?s region of interest for cow images in natural scenes, which demonstrates the effectiveness of the model. Therefore, the model proposed in this study can improve the accuracy of the model for detecting cow estrus events. Additionally, the model?s inference speed was 71 frames per second (fps), which meets the requirements of fast and accurate detection of cow estrus events in natural scenes and all-weather conditions.

 Artículos similares

       
 
Chenglin Wang, Qiyu Han, Chunjiang Li, Jianian Li, Dandan Kong, Faan Wang and Xiangjun Zou    
Reasonably formulating the strawberry harvesting sequence can improve the quality of harvested strawberries and reduce strawberry decay. Growth information based on drone image processing can assist the strawberry harvesting, however, it is still a chall... ver más
Revista: Agriculture

 
Fang Wang, Xueliang Fu, Weijun Duan, Buyu Wang and Honghui Li    
The utilization of ear tags for identifying breeding pigs is a widely used technique in the field of animal production. Ear tag dropout can lead to the loss of pig identity information, resulting in missing data and ambiguity in production management and... ver más
Revista: Agriculture

 
Jerry Gao, Charanjit Kaur Bambrah, Nidhi Parihar, Sharvaree Kshirsagar, Sruthi Mallarapu, Hailong Yu, Jane Wu and Yunyun Yang    
With the development of artificial intelligence, the intelligence of agriculture has become a trend. Intelligent monitoring of agricultural activities is an important part of it. However, due to difficulties in achieving a balance between quality and cos... ver más
Revista: Agriculture

 
Xiuying Xu, Yingying Gao, Changhao Fu, Jinkai Qiu and Wei Zhang    
The cover of corn stover has a significant effect on the emergence and growth of soybean seedlings. Detecting corn stover covers is crucial for assessing the extent of no-till farming and determining subsidies for stover return; however, challenges such ... ver más
Revista: Agriculture

 
Ping Dong, Kuo Li, Ming Wang, Feitao Li, Wei Guo and Haiping Si    
In addition to the conventional situation of detecting a single disease on a single leaf in corn leaves, there is a complex phenomenon of multiple diseases overlapping on a single leaf (compound diseases). Current research on corn leaf disease detection ... ver más
Revista: Agriculture