Inicio  /  Algorithms  /  Vol: 16 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

An Adversarial DBN-LSTM Method for Detecting and Defending against DDoS Attacks in SDN Environments

Lei Chen    
Zhihao Wang    
Ru Huo and Tao Huang    

Resumen

As an essential piece of infrastructure supporting cyberspace security technology verification, network weapons and equipment testing, attack defense confrontation drills, and network risk assessment, Cyber Range is exceptionally vulnerable to distributed denial of service (DDoS) attacks from three malicious parties. Moreover, some attackers try to fool the classification/prediction mechanism by crafting the input data to create adversarial attacks, which is hard to defend for ML-based Network Intrusion Detection Systems (NIDSs). This paper proposes an adversarial DBN-LSTM method for detecting and defending against DDoS attacks in SDN environments, which applies generative adversarial networks (GAN) as well as deep belief networks and long short-term memory (DBN-LSTM) to make the system less sensitive to adversarial attacks and faster feature extraction. We conducted the experiments using the public dataset CICDDoS 2019. The experimental results demonstrated that our method efficiently detected up-to-date common types of DDoS attacks compared to other approaches.

 Artículos similares

       
 
Saqib Ali, Sana Ashraf, Muhammad Sohaib Yousaf, Shazia Riaz and Guojun Wang    
The successful outcomes of deep learning (DL) algorithms in diverse fields have prompted researchers to consider backdoor attacks on DL models to defend them in practical applications. Adversarial examples could deceive a safety-critical system, which co... ver más
Revista: Applied Sciences

 
Raluca Chitic, Ali Osman Topal and Franck Leprévost    
Recently, convolutional neural networks (CNNs) have become the main drivers in many image recognition applications. However, they are vulnerable to adversarial attacks, which can lead to disastrous consequences. This paper introduces ShuffleDetect as a n... ver más
Revista: Applied Sciences

 
Minxiao Wang, Ning Yang, Dulaj H. Gunasinghe and Ning Weng    
Utilizing machine learning (ML)-based approaches for network intrusion detection systems (NIDSs) raises valid concerns due to the inherent susceptibility of current ML models to various threats. Of particular concern are two significant threats associate... ver más
Revista: Computers

 
Yuwen Fu, E. Xia, Duan Huang and Yumei Jing    
Machine learning has been applied in continuous-variable quantum key distribution (CVQKD) systems to address the growing threat of quantum hacking attacks. However, the use of machine learning algorithms for detecting these attacks has uncovered a vulner... ver más
Revista: Applied Sciences

 
Albatul Albattah and Murad A. Rassam    
Deep learning (DL) models are frequently employed to extract valuable features from heterogeneous and high-dimensional healthcare data, which are used to keep track of patient well-being via healthcare monitoring systems. Essentially, the training and te... ver más
Revista: Applied Sciences