Resumen
In this paper, we present an implementation of a research data management system that features structured data storage for spatio-temporal experimental data (environmental perception and navigation in the framework of autonomous driving), including metadata management and interfaces for visualization and parallel processing. The demands of the research environment, the design of the system, the organization of the data storage, and computational hardware as well as structures and processes related to data collection, preparation, annotation, and storage are described in detail. We provide examples for the handling of datasets, explaining the required data preparation steps for data storage as well as benefits when using the data in the context of scientific tasks.