|
|
|
Feng Tian, Mengjiao Wang and Xiaopei Liu
Aiming at solving the problems of local halo blurring, insufficient edge detail preservation, and serious noise in traditional image enhancement algorithms, an improved Retinex algorithm for low-light mine image enhancement is proposed. Firstly, in HSV c...
ver más
|
|
|
|
|
|
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr...
ver más
|
|
|
|
|
|
Anqing Wang, Longwei Li, Haoliang Wang, Bing Han and Zhouhua Peng
In this paper, a swarm trajectory-planning method is proposed for multiple autonomous surface vehicles (ASVs) in an unknown and obstacle-rich environment. Specifically, based on the point cloud information of the surrounding environment obtained from loc...
ver más
|
|
|
|
|
|
Nadia Brancati and Maria Frucci
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ...
ver más
|
|
|
|
|
|
Jie Ren, Changmiao Li, Yaohui An, Weichuan Zhang and Changming Sun
Few-shot fine-grained image classification (FSFGIC) methods refer to the classification of images (e.g., birds, flowers, and airplanes) belonging to different subclasses of the same species by a small number of labeled samples. Through feature representa...
ver más
|
|
|