Inicio  /  Applied Sciences  /  Vol: 10 Par: 19 (2020)  /  Artículo
ARTÍCULO
TITULO

OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy

Asghar Rezaei    
Hugo Giambini    
Alan L. Miller II    
Xifeng Liu    
Benjamin D. Elder    
Michael J. Yaszemski and Lichun Lu    

Resumen

The spinal column is the most common site for bone metastasis. Vertebral metastases with instability have historically been treated with corpectomy of the affected vertebral body and adjacent intervertebral discs, and have more recently been treated with separation surgery. With demographics shifting towards an elderly population, a less-invasive surgical approach is necessary for the repair of vertebral defects. We modified a previously reported expandable hollow cage composed of an oligo[poly(ethylene glycol) fumarate] (OPF) containment system that could be delivered via a posterior-only approach. Then, the polymer of interest, poly (methyl methacrylate) (PMMA) bone cement, was injected into the lumen of the cage after expansion to form an OPF/PMMA cage. We compared six different cage formulations to account for vertebral body and defect size, and performed a cage characterization via expansion kinetics and mechanical testing evaluations. Additionally, we investigated the feasibility of the OPF/PMMA cage in providing spine stability via kinematic analyses. The in-vitro placement of the implant using our OPF/PMMA cage system showed improvement and mechanical stability in a flexion motion. The results demonstrated that the formulation and technique presented in the current study have the potential to improve surgical outcomes in minimally invasive procedures on the spine.

 Artículos similares

       
 
Yuting Zhai, Haisheng Zhao, Xin Li and Wei Shi    
In this study, a novel large-scale barge-type floating offshore wind turbine with an aquaculture cage (LSBT-FOWT-AC) in a water depth of 100 m is designed through fully coupled analysis using the SESAM tool to support the Technical University of Denmark ... ver más

 
Sang Kuy Han, Keonwoo Kim, Yejoon Rim, Manhyung Han, Youngjeon Lee, Sung-Hyun Park, Won Seok Choi, Keyoung Jin Chun and Dong-Seok Lee    
By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker... ver más
Revista: Applied Sciences

 
Zhongchi Liu, Shan Wang and C. Guedes Soares    
The mooring force in a fish cage array subjected to currents and waves is investigated using the finite element method. Firstly, the numerical model of a fish cage array with six gravity cages is built by Ansys/APDL. Collars and bottom rings are simulate... ver más

 
Stefano Carletta, Augusto Nascetti, Sagar S. Gosikere Matadha, Lorenzo Iannascoli, Thiago Baratto de Albuquerque, Nithin Maipan Davis, Luigi Schirone, Gabriele Impresario, Simone Pirrotta and John R. Brucato    
AstroBio CubeSat is a mission funded by the Italian Space Agency aimed at validating novel lab-on-chip technology, that would enable the use of micro- and nanosatellites as autonomous orbiting laboratories for research in astrobiology. This 3U CubeSat is... ver más
Revista: Aerospace

 
Tobias Martin, Arun Kamath, Gang Wang and Hans Bihs    
The numerical framework of the open source CFD solver REEF3D is utilised to study the fluid?structure interaction of an open ocean aquaculture system and waves. The presence of the net is considered in the momentum equations of the fluid using a forcing ... ver más