Inicio  /  Applied Sciences  /  Vol: 10 Par: 11 (2020)  /  Artículo
ARTÍCULO
TITULO

A Novel Deep Learning Approach for Tropical Cyclone Track Prediction Based on Auto-Encoder and Gated Recurrent Unit Networks

Jie Lian    
Pingping Dong    
Yuping Zhang and Jianguo Pan    

Resumen

Under global climate change, the frequency of typhoons and their strong wind, heavy rain, and storm surge increase, seriously threatening the life and property of human society. However, traditional tropical cyclone track prediction methods have difficulties in processing large amounts of complex data in terms of prediction efficiency and accuracy. Recently, deep learning methods have shown a potential capability to process complex data efficiently and accurately. In this paper, we propose a novel data-driven approach based on auto-encoder (AE) and gated recurrent unit (GRU) models to forecast tropical cyclone landing locations using the historical tropical cyclone tracks and various meteorological attributes. This approach fuses a data preprocessing layer, an AE layer, and a GRU layer with a customized batch process. The model is trained on a real-world tropical cyclone dataset from the years 1945?2017. Through a comparison with existing forecasting methods, the results verified that our proposed model performed around 15%, 42%, and 56% better than the Numerical Weather Prediction model (NWP) in 24, 48, and 72 h forecasts, and 27%, 13%, 17%, and 17% better than RNN, AE-RNN, GRU, and LSTM, respectively, in 24 h forecasts, using the absolute position error. In addition, a comparison of the meteorological variables indicated that the variable maximum sustained wind speed had the most significant effect on tropical cyclone track prediction.

 Artículos similares

       
 
Tomasz Walczyna and Zbigniew Piotrowski    
The proliferation of ?Deep fake? technologies, particularly those facilitating face-swapping in images or videos, poses significant challenges and opportunities in digital media manipulation. Despite considerable advancements, existing methodologies ofte... ver más
Revista: Applied Sciences

 
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing    
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ... ver más
Revista: Applied Sciences

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness. Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity in terms of location, color, and shape among different lesion... ver más
Revista: Applied Sciences

 
Carlos Munoz, Kirsten Schröder, Bernhard Henes, Jane Hubert, Sébastien Leblond, Stéphane Poigny, Ralf Reski and Franziska Wandrey    
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it ind... ver más
Revista: Applied Sciences