Inicio  /  Applied Sciences  /  Vol: 13 Par: 20 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental Investigation on Effect of Temperature on FDM 3D Printing Polymers: ABS, PETG, and PLA

Ryan Mendenhall and Babak Eslami    

Resumen

Four-dimensional printing is a process in which a 3D-printed object is intentionally transformed in response to an external stimulus such as temperature, which is useful when the final geometry of a 3D-printed part is not easily manufacturable. One method to demonstrate this is to print a part made of thin strips of material on a sheet of paper, heat the part, and allow it to cool. This causes the part to curl due to the difference in the thermal expansion coefficients of the paper and plastic. In an attempt to quantify the effect of different temperatures on various materials, samples of three common 3D printing filaments, acrylonitrile butadiene styrene (ABS), polyethylene terephthalate glycol (PETG), and polylactic acid (PLA), were heated at different temperatures (85 °C, 105 °C, and 125 °C) for intervals of 15 min and then allowed to cool until curling stopped. This heating and cooling cycle was repeated three times for each sample to determine if repeated heating and cooling influenced the curling. Each sample was filmed as it was cooling, which allowed the radius of curvature to be measured by tracking the uppermost point of the part, knowing the arc length, and calibrating the video based on a known linear length. After three cycles, all three materials showed a decrease in the radius of curvature (tighter curl) as heating temperature increased, with PLA showing the trend much more predominantly than ABS and PETG. Furthermore, for PETG and PLA, the radius of curvature decreased with each cycle at all temperatures, with the decrease being more significant from cycle 1 to 2 than cycle 2 to 3. Conversely, ABS only shared this trend at 125 °C. The findings of this work can provide guidelines to users on the temperature dosage for the mass manufacturing of complex geometries such as packaging, self-assembly robots, and drug delivery applications.

 Artículos similares

       
 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Yusong Wang, Chengxiang Zhu, Ke Xiong and Chunling Zhu    
Ice accumulation on airfoils and engines seriously endangers fight safety. The design of anti-icing/de-icing systems calls for an accurate measurement of the adhesion strength between ice and substrates. In this research, a test bench for adhesion streng... ver más
Revista: Aerospace

 
Sonja Kostic, Vladimir Kocovic, Suzana Petrovic Savic, Dragomir Miljanic, Jasmina Miljojkovic, Milan Djordjevic and Djordje Vukelic    
Polypropylene is a widely used linear hydrocarbon polymer with diverse applications due to its exceptional physicochemical characteristics and minimal changes during the recycling process. Numerous studies have focused on factors influencing the mechanic... ver más
Revista: Applied Sciences

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Zheng Gong, Nicholas Barnett, Jangguen Lee, Hyunwoo Jin, Byunghyun Ryu, Taeyoung Ko, Joung Oh, Andrew Dempster and Serkan Saydam    
Water resources are essential to human exploration in deep space or the establishment of long-term lunar habitation. Ice discovered on the Moon may be useful in future missions to the lunar surface, necessitating the consideration of in situ resource uti... ver más
Revista: Aerospace