ARTÍCULO
TITULO

Path Planning Method for Underwater Gravity-Aided Inertial Navigation Based on PCRB

Bo Wang and Tijing Cai    

Resumen

Gravity-aided inertial navigation system (GAINS) is an important development in autonomous underwater vehicle (AUV) navigation. An effective path planning algorithm plays an important role in the performance of navigation in long-term underwater missions. By combining the gravity information obtained at each position with the error information from the INS, the posterior Cramér-Rao bound (PCRB) of GAINS is derived in this paper. The PCRB is the estimated lower bound of position variance for navigation along the planned trajectory. And the sum of PCRB is used as the minimum cost from the initial state to the current state in the state space, and the position error prediction variance of inertial navigation system (INS) is used as the minimum estimated cost of the path from the current state to the goal state in the A* algorithm. Thus, a path planning method with optimal navigation accuracy is proposed. According to simulation results, traveling along the path planned by the proposed method can rapidly improve the positioning accuracy while consuming just slightly more distance. Even when measuring noise changes, the planned path can still maintain optimal positioning accuracy, and high positioning accuracy is possible for any trajectory located within a certain range of the planned path.

 Artículos similares

       
 
Chuanwei Zhang, Xinyue Yang, Rui Zhou and Zhongyu Guo    
In order to solve the problem of low safety and efficiency of underground mine vehicles, a path planning method for underground mine vehicles based on an improved A star (A*) and fuzzy control Dynamic Window Approach (DWA) is proposed. Firstly, the envir... ver más
Revista: Applied Sciences

 
Zilin Zhao, Zhi Cai, Mengmeng Chang and Zhiming Ding    
Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large... ver más
Revista: Applied Sciences

 
Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao    
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encounterin... ver más
Revista: Aerospace

 
Chenglou Liu, Fangfang Xie and Tingwei Ji    
Formation path planning is a significant cornerstone for unmanned aerial vehicle (UAV) swarm intelligence. Previous methods were not suitable for large-scale UAV formation, which suffered from poor formation maintenance and low planning efficiency. To th... ver más
Revista: Aerospace

 
Chaopeng Yang, Jiacai Pan, Kai Wei, Mengjie Lu and Shihao Jia    
Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on a... ver más